Fairfax, Virginia

Brenton Decker
The Pennsylvania State University
Construction Management

Fairfax, Virginia

The Pennsylvania State University **Construction Management**

George Mason PE Building

Project Overview

Acceleration of Structural Steel Erection

Mechanical Analysis – Fabric Duct in New Venue Gym

Structural Analysis – Reduction of Roof Beam Sizes

BIM Implementation for Façade Construction

Summary and Conclusions

Acknowledgements

Questions

Fairfax, Virginia

Brenton Decker
The Pennsylvania State University
Construction Management

Project Overview

Project Overview

Total Cost: \$29 million

Size: 116,166 sf (2 stories) - 49,240 sf of renovation

66,926 sf of new construction

Dates of Construction: October 2007 – May 2009

Function: Multi-functional Recreational Facility

Building: 3-gymnasiums, squash/racquetball courts, strength-

training facility, admin. Offices, juice bar & lounge area,

locker rooms

Fairfax, Virginia

Brenton Decker
The Pennsylvania State University
Construction Management

Project Overview

Project Overview

Project Team

Owner: George Mason University

Architect: Ewing Cole **CM:** Gilbane Building Co.

Civil Engineer: Christopher Consultants

MEP Engineer: Ewing Cole

Landscape Architect: Lewis Scully Gionet
Audio/Visual Consultant: PMK Consultants

Project Delivery Method: CM @ Risk

Fairfax, Virginia

The Pennsylvania State University
Construction Management

Project Overview

Structure: Shallow spread footings and strip footings, Structural Steel

Façade: Brick w/ CMU backup, Curtain wall, Storefront windows, and Metal panels

Architecture: Very Modern compared to rest of campus.

Meant to be somewhat of a signature building

Fairfax, Virginia

The Pennsylvania State University Construction Management

Introduction Original Schedule Accelerated Schedule Other Trades Site Conclusion

Problem:

- Project behind schedule

Goal:

- Make up some of the lost time
- Provide a more efficient work flow

Fairfax, Virginia

Brenton Decker
The Pennsylvania State University
Construction Management

Schedule Acceleration of Steel Erection

では、一般の

Original Schedule	86 days	Tue 3/11/08	Tue 7/8/081
New Gym Underground	8 days	Tue 3/11/08	Thu 3/20/08 8
Mech. Underground	15 days	Mon 3/17/08	Fri 4/4/08 8
New Gym SOG	5 days	Tue 3/25/08	Mon 3/31/08 8
East Wing Underground	20 days	Mon 3/31/08	Frl 4/25/08 8
New Gym Steel	25 days	Fri 4/4/08	Thu 5/8/08 8
Mech. Steel	15 days	Thu 4/17/08	Wed 5/7/08 8
Fast Wing SOG	15 days	Frt 4/18/08	Thu 5/808 8
East Wing Steel	40 days	Wed 5/14/08	Tue 7/8/08 8

Original Steel Erection Time: 65 work days

Fairfax, Virginia

Brenton Decker The Pennsylvania State University **Construction Management**

Schedule Acceleration of Steel Erection

Introduction Original Schedule Accelerated Schedule Other Trades Site Conclusion

Original Schedule	86 days	Tue 3/11/08	Tue 7/8/08
New Gym Underground	8 days	Tue 3/11/08	Thu 3/20/08
Mech. Underground	15 days	Mon 3/17/08	Fri 4/4/08
New Gym SOG	5 days	Tue 3/25/08	Mon 3/31/08
East Wing Underground	20 days	Mon 3/31/08	Fri 4/25/08
New Gym Steel	25 days	Frl 4/4/08	Thu 5/8/08 8
Mech. Steel	15 days	Thu 4/17/08	Wed 5/7/08
Fast Wing SOG	15 days	Frt 4/18/08	Thu 5/8/08 8
East Wing Steel	40 days	Wed 5/14/08	Tue 7/8/08

Original Steel Erection Time: 65 work days

Accelerate	ed Schedule	77 days	Tue 3/11/08	Wed 6/25/0
New Gyr	n Underground	8 days	Tue 3/11/08	Thu 3/20/0
Mech. U	nderground	15 days	Mon 3/17/08	Fri 4/4/0
New Gyr	n SOG	5 days	Frt 3/21/08	Thu 3/27/0
East Wr	g Underground	10 days	Mon 3/31/08	Frl 4/11/0
New Gyr	n Steel	25 days	Fri 4/4/08	Thu 5/8/0
Mech. St	eel	15 days	Thu 4/17/08	Wed 5/7/0
East Wr	q SOG	15 days	Fri 4/4/08	Thu 4/24/0
East Wr	g Steel	40 days	Thu 5/1/08	Wed 6/25/0

Accelerated Steel Erection Time: 56 work days

Fairfax, Virginia

The Pennsylvania State University **Construction Management**

Schedule Acceleration of Steel Erection

Schedule Acceleration of Steel Erection

Introduction Original Schedule Accelerated Schedule Other Trades Site Conclusion

Affected Work

- New East Wing Underground
- New East Wing SOG
- Gilbane's Office

Steel Erection Crew					
Crew E-7	Hr.	Daily			
tructural Steel Foreman	\$46.70	\$373.60			
itruc. Steel Workers	\$44.70	\$1,430.40			
quip. Operator	\$42.55	\$340.40			
quip. Operator Oiler	\$36.80	\$294.40			
Velder Foreman	\$46.70	\$373.60			
Velders	\$44.70	\$715.20			
ydraulic Truck Crane, 80 Ton		\$1,296.00			
Velders, gas engine, 300 Amp		\$268.40			
L.H., Daily Totals		\$5,092.00			

Underground Work Crew					
Crew B-17A	Hr.	Daily			
2 Laborer Foremen	\$33.60	\$537.60			
6 Laborers	\$31.60	\$1,516.80			
1 Skilled Worker Foreman	\$42.85	\$342.80			
1 Skilled Worker Foreman	\$40.85	\$326.80			
80 L.H., Daily Totals		\$2,724.00			

Total Added Cost: \$212,000

Fairfax, Virginia

Brenton Decker
The Pennsylvania State University
Construction Management

Schedule Acceleration of Steel
Erection

Introduction Original Schedule Accelerated Schedule Other Trades Site Conclusion

Fairfax, Virginia

The Pennsylvania State University Construction Management

Introduction Original Schedule Accelerated Schedule Other Trades Site Conclusion

Conclusions:

- Acceleration of New East Wing Steel save 9 work days
- Added costs to accelerate schedule are \$212,000
- Cost too high for small schedule savings, don't implement

Fairfax, Virginia

Brenton Decker
The Pennsylvania State University

The Pennsylvania State University Construction Management

Mechanical Analysis: Fabric Duct System

Introduction Existing Duct Why Fabric Fabric Design Cost/Schedule Impact Conclusion

Problem:

- Metal duct reduces aesthetics
- Costly when compared to other alternative
- Hard to keep clean

Goal:

- Provide a healthier and more aesthetically pleasing space
- Reduce cost and installation time

Fairfax, Virginia

Brenton Decker
The Pennsylvania State University
Construction Management

Mechanical Analysis: Fabric Duct System

Mechanical Analysis: Fabric Duct System

Introduction Existing Duct Why Fabric Fabric Design Cost/Schedule Impact Conclusion

Design Conditions

- •24 ga. Galvanized steel
- 30 ft. above finished floor
- 23,000 cfm Rooftop AHU
- Minimum OA supplied @ 70%

Fairfax, Virginia

Brenton Decker
The Pennsylvania State University
Construction Management

Mechanical Analysis: Fabric Duct System

Mechanical Analysis: Fabric Duct System

Introduction Existing Duct Why Fabric Fabric Design Cost/Schedule Impact Conclusion

- Aesthetics
- Superior Air Dispersion
- Little Balancing
- Easy Installation
- Hygienic
- Cleanable

Fairfax, Virginia

Brenton Decker The Pennsylvania State University **Construction Management**

Mechanical Analysis: Fabric Duct System

Fabric Airflow

Q_{Febric} = FP x SA x (AP/0.5)

=1.5x6579x(.5/.5)

Mechanical Analysis: Fabric Duct System

Introduction Existing Duct Why Fabric Fabric Design Cost/Schedule Impact Conclusion

Verona Fabric w/ Comfort Flow

Diameter		Inlet	Velocity	
Diameter	1,000	1,200	1,400	
54	15,904	19,085	22,266	

1.5 x Dia away from endcap = 6'9"

Q _{vent} =	5160	cfm

TVS = ((Length) x °(

Throw – Directional Airflow

9&3 and 4&8 o'clock chosen Throw required for 4&8 o'clock

(Height – 6) x 2.00 = <u>Throw</u> $(30-6) \times 2.00 = 48 \text{ fpm}$

= 9868 cfm

P/0.5)	١

Vent	AP	Airflow	Distar	nce (ft) to Velo	city (FPM)
Size	(in w.g.)	(CFM/ea)	150	100	50
	0.25	10.6	8	12	18
15	0.50	15.0	- 11	16	26
1.7	0./5	18.4	13	20	32
	1.00	21.2	15	23	27

Fairfax, Virginia

The Pennsylvania State University
Construction Management

Mechanical Analysis: Fabric Duct System

Introduction Existing Duct Why Fabric Fabric Design Cost/Schedule Impact Conclusion

Suspension

- 2-row Tension Cables

Fairfax, Virginia

The Pennsylvania State University
Construction Management

Mechanical Analysis: Fabric Duct System

Mechanical Analysis: Fabric Duct System

Introduction Existing Duct Why Fabric Fabric Design Cost/Schedule Impact Conclusion

Metal Duct	Cost	Fabric Duct	Cost
Supply	\$35,990.47	Supply	\$21,383.20
Return	\$27,234.40	Return	\$27,234.40
Total Cost	\$63,224.87		\$48,617.60
Savings			\$14,607.27

Fabric Duct Installation				
Activity	Time (hrs)			
Inlet connection				
Cable Suspension & hang duct	42.16			
Add 20% for diameter 41-60"	8.43			
Total				

Fabric Supp
Savings

Duct Installation Time

12 days 6.5 days **5.5 days**

Metal Supply Duct

^{*} Note installation time based on 2 man crew

Fairfax, Virginia

The Pennsylvania State University Construction Management

Mechanical Analysis: Fabric Duct System

Introduction Existing Duct Why Fabric Fabric Design Cost/Schedule Impact Conclusion

Conclusions:

- Fabric duct has many benefits over metal duct
- Cost savings of \$14,607
- Schedule savings of 5.5 days
- Fabric duct is a feasible alternative

Fairfax, Virginia

The Pennsylvania State University **Construction Management**

Structural Analysis: Reducing Roof Beam Sizes

Goals:

Conclusion

Problem:

- Roof overdesigned for mechanical loading

- save money due to the size reduction

- Reduce roof beam sizes

Existing Beams Reduced Beams Cost Impact

Fairfax, Virginia

Brenton Decker The Pennsylvania State University **Construction Management**

Introduction

Structural Analysis: Reducing Roof Beam Sizes

Structural Analysis: Reducing Roof Beam Sizes

W14 x 22 beams

W12 x 19 beams

(2) 8,000 lb AHU's

Mechanical design loading - 75psf

Fairfax, Virginia

Brenton Decker
The Pennsylvania State University
Construction Management

Structural Analysis: Reducing Roof Beam Sizes

ACT

ceiling tile

Structural Analysis: Reducing Roof Beam Sizes

troduction Ex	xisting Beams	Reduced Beams	Cost Impact	Conclusion
	100 at a see	TO THE PARTY OF TH		Total State of the

Dead Loads	Weight (psf)	Snow Loads	Wei (p:
Misc. dead load		Snow load	3
AHU	6.4	Snow drift load	6
3-ply roofing			
Rigid Insulation	0.75		
20 ga. Metal deck	2.5		

V_{max}	=	11	.5 I	kip	S	
M _{max}	, =	48	3.6	ft-	kip):

From Steel Manual
W12 x 14 can be used

Fairfax, Virginia

The Pennsylvania State University
Construction Management

Structural Analysis: Reducing Roof Beam Sizes

Structural Analysis: Reducing Roof Beam Sizes

ntroduction	Existing Beams	Reduced Beams	Cost Impact	Conclusion
		Total Control	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Dead Loads	Weight (psf)	Snow Loads	Weigh (psf)
sc. dead ad		Snow load	30
łU	8.6	Snow drift load	65
oly ofing			
gid sulation	0.75		
ga.	2.5		

ceiling tile

V _{max} = 9.25 kips	
M _{max} = 30.8 ft-kips	s

From Steel Manual
W12 x 14 can be used

Fairfax, Virginia

The Pennsylvania State University **Construction Management**

Structural Analysis: Reducing Roof Beam Sizes

Introduction Existing Beams Reduced Beams Cost Impact

Conclusion

Cost comparison using MC²

- 30 beams total

Roof Beams Cost Original Roof Members \$70,071.69 Reduced Members \$54,486.42 Savings \$15,585.27

Fairfax, Virginia

The Pennsylvania State University **Construction Management**

Structural Analysis: Reducing Roof Beam Sizes

Existing Beams Reduced Beams Cost Impact Introduction

Conclusions:

- Mechanical loads on concerned roof don't exceed 29 psf
- Beams can all be reduced to W12 x 14's
- Cost savings of \$15,585

Reducing these beam sizes is a feasible alternative

Fairfax, Virginia

The Pennsylvania State University **Construction Management**

Industry Research: BIM Implementation

BIM on Façade Construction

Conclusion

Problem:

- Complex facades consisting of 9 different types
- Connection details and constructability not clearly defined
- Several change orders & many coordination meetings regarding issue

Goals:

- Show that BIM could have been beneficial to this process
- Determine cost of implementing BIM for GMU
- Determine why BIM isn't used more often in the industry

Fairfax, Virginia

The Pennsylvania State University **Construction Management**

Industry Research: BIM Implementation

Introduction

BIM on Façade Construction

Conclusion

Benefits

Better Coordination between trades

- Find problems before built in field • Reduce change orders

Cost of Implementing BIM

- .5 % of the overall construction cost • Would cost \$120,000 to implement

Why BIM is slow to catch on

- Struggle over who should pay for BIM on projects
- Recommend cost be divide equally amongst benefiting parties

Fairfax, Virginia

The Pennsylvania State University **Construction Management**

Industry Research: BIM Implementation

Introduction

BIM on Façade Construction

Conclusions:

- BIM provides many benefits that make it worth the investment
- Would cost \$120,000 to implement on GMU
- Cost should be divided equally among benefiting parties

Fairfax, Virginia

Brenton Decker
The Pennsylvania State University
Construction Management

Summary & Conclusions

Summary & Conclusions

Schedule Acceleration

- -Would cost \$212,000 to accelerate
- Saves 9 work days
- Site slightly more congested

Mechanical Analysis

- -Fabric duct has many benefits over metal
- Cost savings of \$14,607
- Schedule savings of 5.5 days

Structural Analysis

- -Beams reduced to W12 x 14's
- Cost savings of \$15, 585

Industry Research: BIM

- -Would cost \$120,000 to implement
- Cost should be divided between benefiting parties
- Benefits outweigh costs

Fairfax, Virginia

The Pennsylvania State University **Construction Management**

Acknowledgements

ISEC, Inc — Matt Heistand, Jim McCallister

GMU – Chris Brooks

Gilbane Building Co. – Adam Davis, Nick Ivey, Brian Horn

Alexander Construction – Daniel Flickinger, Chris Magent

H&H Associates – Roger Bower

AE Faculty & Staff

Family & Friends

Fairfax, Virginia

The Pennsylvania State University
Construction Management

Questions

Questions?